JGE05

Geotechnical Software

Software

FEM - Water Flow, Consolidation

Tomáš Janda

C O M P U T E R S

www.finesoftware.eu

Outline

• 1 slide of water flow equations

• Terminology

- Steady state water flow
- Transient water flow
- Consolidation

• Recapitulation of Geo5 FEM

Geotechnical Software www.finesoftware.eu

Differential equation

- Continuity equations: $n \frac{\partial S}{\partial t} + \nabla [nS v^w] = 0$
- Darcy law: $nSv^w = -\frac{K}{\gamma_w}(\nabla p \gamma_w i_g)$
- *n* porosity
- S degree of saturation
- *t* time

C Z C

- v^w velocity of water
- K coefficient of permeability
- *p* water pore pressure

Geotechnical Software

www.finesoftware.eu

AUTHORISED RESELLER

• Darcy law: $nSv^{w} = -\frac{K}{\gamma_{w}}(\nabla p - \gamma_{w}i_{g})$

n porosity
 S degree of saturati
 t time

v^w velocity of water
K coefficient of permea

K coefficient of permeability *p* water pore pressure

Degree of saturation S

- Ratio of pores filled with water over all pores
- $S = \frac{V_w}{V_p}$
- Units [-]

Geotechnical Software www.finesoftware.eu

Pore pressure u

- Units [kPa]
- Pore pressure at GWT is zero
- Negative pore pressure above GWT

- "suction"

 Water does **not** flow from a point with higher pressure to a point with lower pressure!

5 <u>Geotechnical Software</u> www.finesoftware.eu

GE

fine

Total hydraulic head h

- Position of free GWT in piezometer $h = h_p + z = \frac{u}{\gamma_w} + z$
- Water flows from point with higher *h* to point with lower *h*

GEO5 Geotech

Geotechnical Software www.finesoftware.eu

Darcy law

$$\boldsymbol{v} = n\boldsymbol{v}_s = -K_r \boldsymbol{K}_{sat} \nabla h$$

 v_s velocity of water particles in pores K_r relative coefficient of permeability K_{sat} permeability matrix

$$\boldsymbol{K}_{sat} = \begin{bmatrix} k_x & 0\\ 0 & k_z \end{bmatrix}$$

 k_x , k_z coefficients of permeability ∇h gradient of total head

Geotechnical Software www.finesoftware.eu

Coefficient of permeability

- Higher size of grains \rightarrow higher k
- Empirical formulas based grain size
- Laboratory tests
- Table in GEO5 help pages

Type of soil	Coefficient of permeability <i>k</i> [<i>m/day</i>]	Motion of water particle by <i>l</i> cm for hydraulic gradient <i>i</i> = <i>l</i> per time
Soft sand	10 ² - 10	6 s - 10 min
Clayey sand	10 ⁻¹ - 10 ⁻²	100 min - 18 hrs
Loess loam	10 ⁻² - 10 ⁻⁴	18 hrs - 70 days
Loam	10 ⁻⁴ - 10 ⁻⁵	70 days - 2 years
Clayey soil	10 ⁻⁵ - 10 ⁻⁶	2 years - 20 years
Clay	10 ⁻⁶ - 10 ⁻⁷	20 years - 200 years

Geotechnical Software www.finesoftware.eu

Unsaturated soil

- Negative pore pressure suction
- Coefficient of relative permeability K_r

• $K_r = K_r(h_p)$

Geotechnical Software www.finesoftware.eu

fine

Unsaturated soil

- Model for relative coefficient of permeability
- Below GWT $K_r = 1$
- Above GWT $K_r \rightarrow 0$

fine

Fine Civil Engineering Software

GEO5

Boundary conditions

- "Point flows" inflow, outflow, drain, well
- "Line flows" prescribed GWT level
- Seepage line outflow only under GWT

fine

Fine Civil Engineering Software

Steady state water flow

- 1. Find the position of GWT
- 2. Compute the amount of water going through the model

"construction stages" are variants (order does not matter)

- Project parameters		– Design standards		- Advanced program options
Project type :	Plane strain	Concrete structures :	EN 1992-1-1 (EC2)	Advanced mesh generating parameters
Analysis type :	Stress	 Calculation of geostatic stress 	s (1st stage)	Advanced soil parameters
 Tunnels Allow to input water as the 	Steady state water flow Transient water flow Slope stability Consolidation	Analysis method :	Geostatic stress	 Advanced solitification Detailed results
_			AUTHORISED RESELLER	
CEOF	Geotechnical Software		ISEKO	fir
GEU D	www.finesoftware.eu			Eine Civil Engineering Softwa

Transient water flow

- 1. How GWT changes in time
- 2. How the volume of water flowing through model changes in time
- "construction stages" are sequential
- (order matters)
- Stages have duration.

I.	- Project parameters		- Design standards		 Advanced program options
	Project type :	Plane strain	Concrete structures :	EN 1992-1-1 (EC2)	Advanced mesh generating parameters
	Analysis type :	Stress 💌	- Calculation of geostatic stress	(1st stage)	Advanced soil parameters
	Tunnels	Stress Steady state water flow	Analysis method :	Geostatic stress	Advanced soil models
	Allow to input water as the	Transient water flow Slope stability Consolidation			
crinida					
õ					
	CEOF	Geotechnical Software		ISEKO	fine
-	GEUD	www.finesoftware.eu		C O M P U T E R S	Fine Civil Engineering Software

Consolidation

- Two phenomena together
 - Mechanical
 - Water flow
- Loading → excess in water pressure → flow → dissipation of pressure (takes time) → increase of effective stress → deformation
- GEO5 Settlement only 1D flow
- GEO5 FEM Consolidation 2D flow

Consolidation

GE05

Geotechnical Software www.finesoftware.eu AUTHORISED RESELLER

MPUTE

0

R

S

fine

Recapitulation of GEO5 FEM

- Analysis types
 - Stress (mechanical)
 - Deformation, plastic zones, anchored walls, tunnels, ...
 - Stability
 - Factor of safety, failure mechanism
 - Steady state water flow
 - Position of GWT, amount of water
 - Transient water flow
 - Time dependent GWT, change after some event
 - Consolidation
 - Time dependent deformation

EISEKO COMPUTERS S.R.L.

Viale del Lavoro, 17 37036 S. Martino B.A. (VR) tel. + 39 045 8031894 <u>www.eiseko.it</u>

Tel. 045 8031894

support@eiseko.com

Assistenza Remota

Geotechnical Software www.finesoftware.eu

