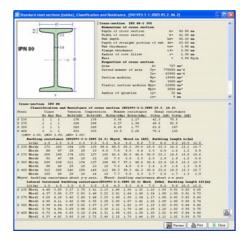

Design tables for Structural Steel Sections (Eurocode 3, EN1993-1-1:2005)

Tables with all the international steel sections, with their **dimensions**, **properties**, **classification**, **resistance and buckling resistance values** according to Eurocode 3, EN1993-1-1:2005. The tables are extended to welded section with dimensions given from the user.

Tables with dimensions and properties of standard steel sections

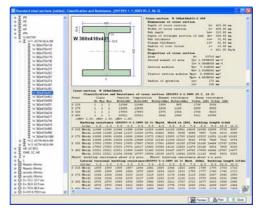

From the left tree you select the section type e.g. IPE, HE etc. On the right the table shows all the standard sections for this group and their dimensions and properties. Moving up and down the table on the right the section drawing is shown in scale (you can grab and move the section drawing around the window and you can make it small or bigger with the arrows).

Click or double click on a section and you obtain analytical report for the classification, resistance values and buckling resistance of the selected section.

head sections	61	1.6		-				(16)		Wy	1000		440	180	we i	with:	4	44.9	(10)	i ber
1995	1	-	-	-	-	-	-	Kale.	100	100	ant	(m.)	-	100	int.	-	-	-	-	-
	x	00	42	19	13	23	117	1.94	77 M	1910	22.8	3.21	112	6.29	3.00	1.00	0.90	5.30	\$74	100
	2 174 100	100	10	45	4.8	27	1040	834	171.4	34.25	31.0	1.400	4.47	12.25	4.00	6.12	1.27	.732	1.37	3071
	X PN 120	1.00	50	: 51	7.7	31	34,20	.11.1	329.0	5470	62.0	1.481	8.54	21.50	7.41	12.40	1.21	12	133	785
	2 191140	140	+6	5.7	=4	14	18,35	143	\$73.0	81.30	10.4	1 100	842	75.71	15.75	17.90	1.3	11.87	370	1.72
	X 294 100	160	14	63	95	14	22.86	17.8	\$25.5	117.0	1361	140	12.08	54.70	14.80	24.90	1.8	14.70	142	343
	X FN 100	100	-	6.9	354	41	27.50	21.8	1.02	161.0	387	72	12.0	91.30	19.00	112	1.75	17.81	8.27	6.87
5	X 999.200	200	- 90	18	11.1	45	3140	312	2140	214.2	381		14.52	2172	*	6170	1.07	21.34	11.60	12:22
	X Ph 220	230	-	-81	122	43	21.50	31.1	3 060	276.8	2241		17.77	162.5	35.16	570	28	24.57	15.00	2045
ri Mil	X 194240	240	126	8.7	121	12	45.10	312	4.25	254.1	4121	1 140	2102	221.0	41.72	70.00	215	28.98	21.36	23.45
S one 2	X PN 250	260	113	84	34.1	14	83.30	41.8	8.742	442.0	8141	15.36	24.36	200.0	11.00		2.32	11.20	2643	11.25
See	I FN 200	200	118	10.1	15.2	41	61.00	47.8	7.900	542.5	07									-
	X #N 300	300	125	12.8	14.2	65	15.20	54.2	8.000	1030	ñ.			-	-	+2-		•		^ R
-	X PN 330	3.0	131	11.5	17.1	63	77.76	\$1.0	12.51	792.5	1		3		_		-	21		1
-	I 196.340	34	112	122	18.3	11	86.75	46.2	1570	1211	iii)) (°				
	X PN.30	30	141	128	185	78	\$7.00	761	19 611	1.06						Ш.				
	X PN 381	340	140	127	201	8.2	107.0	84.0	26.010	120	3.	PN 8	10			łł i				
	X 174-600	400	155	16.4	21.6		118.0	12.4	29 215	1 442	111					н.				
	X mes	-	170	16.2	24.3	\$7	347.8	115.0	6.05	2040	1					11-	- 7	1		- 8
	Z PN 540	500	345	18.2	27.8	10.0	178.0	141.0	98.740	279	1									- 8
	I 974 250	120			-		1000	161.0	-	1444										- 1

Symbols

h [mm]: b [mm]:	Depth of cross section Width of cross section
hw [mm]:	Web depth
dw [mm]:	Depth of straight portion of web
tw [mm]:	Web thickness
tf [mm]:	Flange thickness
r [mm]:	Radius of root fillet
G [Kg/m]:	Mass
A [cm²]:	Area
ly [cm₄]:	Moment of area about axis y-y
lz [cm⁴]:	Second moment of area about axis z-z
Wy [cm³]:	Section modulus about axis y-y
Wz [cm³]:	Section modulus about axis z-z
Wpy [cm]:	Plastic section modulus about axis y-y
Wpz [cm ³]:	Plastic section modulus about axis z-z
iy [cm]:	Radius of gyration about y-y axis
iz [cm]:	Radius of gyration about z-z axis
Avz [cm ²]:	Shear area parallel to web
Avy [cm ²]:	Shear area parallel to flanges
It [cm ⁴]:	Torsional constant
lw [cm ⁶]:	Warping constant


Classification and resistance of standard steel sections

Classification of cross section according to EN1993-1-1:2005 §5.5. Resistance values of cross section according to EN1993-1-1:2005 §6.2. Buckling resistance and lateral buckling resistance according to EN1993-1-1:2005 §6.3

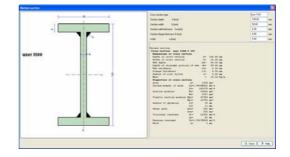
From the tree on the left you select the section with its designation. On the right a drawing of the section profile is displayed together with the section dimensions and properties.

On the right window are also displayed:

- Classification (1,2,3,4) according to EN1993-1-1:2005 §5.5 for axial loading and loading with bending moments.
- Resistances of the section in compression, bending in y-y and z-z axis, and shear according to EN1993-1-1:2005 §6.2
- Buckling resistance for various buckling lengths (Lc) according to EN1993-1-1:2005 §6.3.1
- Lateral torsional buckling resistance for various lateral buckling lengths (L_{tt}) according to EN1993-1-1:2005 §6.3.2

Symbols

NtRd [kN]:	Tension resistance EN1993-1-1:2005 §6.2.3
NcRd [kN]:	Compression resistance EN1993-1-1:2005 §6.2.4
Mcrdy [kNm]:	Bending resistance about the strong y-y axis EN1993-1-1:2005 §6.2.5
Mcrdz [kNm]:	Bending resistance about the weak z-z axis EN1993-1-1:2005 §6.2.5
Vcrdz [kN]:	Shear resistance in the axis z-z parallel to web EN1993-1-1 §6.2.6
Vcrdy [kN]:	Shear resistance in the axis y-y axis parallel to flanges EN1993-1-1:2005 §6.2.6
Nbrdy [kN]: Nbrdz [kN]: Mbrd1 [kNm]: Mbrd2 [kNm]: Mbrd1: Mbrd2:	Buckling resistance in compression about the strong y-y or weak z-z axis, for various buckling lengths Lc (1.00,1.5015 m) EN1993-1-1:2005 §6.3.1 Lateral torsional buckling resistance for various lengths between constrains Llt (1.00,1.5015 m) EN1993-1-1:2005 §6.3.2 Lateral torsional buckling resistance for constant (uniform) bending moment diagram along the beam Lateral torsional buckling resistance for parabolic bending moment diagram along the beam


Tables with dimensions and properties of user defined welded steel sections

Click Edit and you enter the window where you can enter the basic dimensions of a welded steel section. The strength properties of the section are listed at the section.
the section are listed at the same time.
For adding new section or deleting existing
click . Click Stop edit to stop editing.
-

																			_	
Sheet southers	-	8.	2	iter -	1			18	141	wy	3494		Av2	8	10	Subject:	*	Acres	(8)	le.
	· · · · · ·	-	- 696	-	-	-	- 100	Yain	100	100	1	- emi-	-	- 100	- 100	10		- 100	-	-
maandalat.	T.	196	- 10	6.0		82	13.04	182	1963	.31.07	47.31	1.101	1.12	16.02	4.75	12.76	2.16	1.3	129	10
	X		130	84	. 88	8.0	27.94	22.2	1.767	178.7	254.4	\$13	21.52	1317	3.0	#1.96	3.22	16.36	4.72	12.38
	X -+= 100		150	86	104	52	52.40	-0.2	1771	\$962	\$25.4	1238	23.20	9617	75.16	117.8	3.28	3014	14.78	116.2
	I unt 43	43	285	80	-164	. 94	(6.2)	46.8	25.544	1284	1.427	1167	2186	3161	374.2	305	6.04	1234	24.47	1014
	X 93		251	48	4.0	. 70	29.44	27.2	14.271	4701.0	7981	2625	12.84	1.042	11.75	127.8	\$.1)	2016	212	(4) 6
	I	-	300	315	314	12	942.6	2684	10.76	4100	1307	2136	1/1.0	10.622	3081	1412	4.21	3854	1003	198
	X		20	21	24	4.5	427.5	28.4	211479	110	1178	27.36	2118	[3 (4)	1,217	2325	7.34	294.2	1482	5.510
	X == 90		40	34	34	80	535.5	475.6	10.47	12.005	15.25	37.26	257.9	17.534	3.000	3.034	3.00	2523	2,233	4,623
	I 100	80	#10	40.0	61	12.8	488.5	340.4	145 325	10.007	22 234	30.15	366.0	41.167	2718	8.378	341	28.0	3 341	2.328
														-1		1		Ĩ		
	-												5er I			1	•			

Classification and resistance of user defined welded steel sections

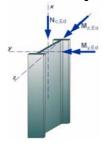
Same as for standard sections.

Parameters

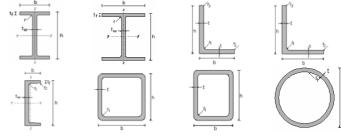
The classification of the sections the strength and buckling resistances are produced for four steel grades, S235, S275, S355 and S450. The names and the basic values of steel grades can be changed from Parameters/Structural steel. To do changes first click to unlock Properties of structural steel Steel Grade fy (MPa) t<=40mm | fu (MPa) t<=40mm fy (MPa) 40<t<=100mm fu (MPa) 40<t<=100mm EN 10025-2 S 235 235 360 215 360 430 S 355 EN 10025-2 355 510 335 470 S 450 EN 10025-2 550 440 550 410

Partial factors for materialsEN1993-1-1:2005, §6.1

The partial factors for materials


 $\gamma_{\rm M0}$, $\gamma_{\rm M1}$, $\gamma_{\rm M2}$ which are use for the

classification and resistance can be changed from Parameters/ Partial factors for materials.


To do changes first click to unlock

🔒 Locked

Coodinate system

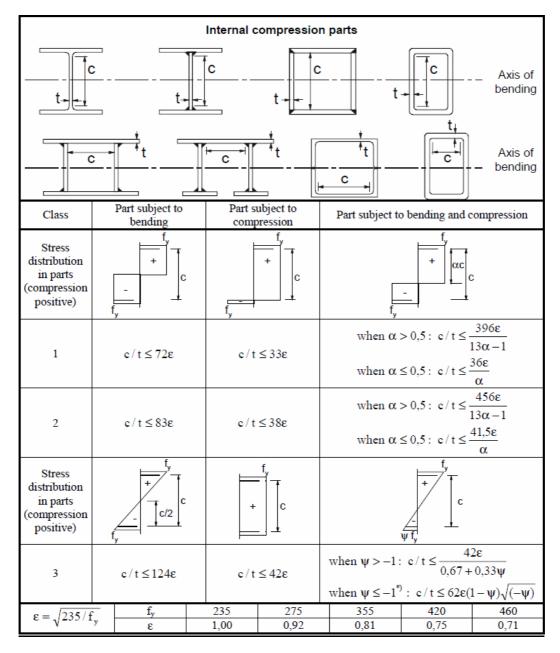
Sections properties

γM0= 1.00

yM1= 1.00

γM2= 1.25

Steel section types included in the program


□···፲ IPE □···፲ IPE Euronorm 19-57 □···፲ IPE A	European I-beams	IPE 80-600 IPE A 80-600 IPE O 180-600 IPE V 400-600
		IPE 750
■	European wide flange beams	HE A 100-1000 HE AA 100-1000 HE B 100-1000 HEM 100-1000 HE 400-1000
●፲ HE M (IPBv) Euronorm 53-62 ●፲ HE Euronorm 53-62 ●፲ HL ■፲ HD		HL 1000/1100
□ 近 HD-1	Beams with very wide flanges	HD 260x54.1 – 400x1086
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Wide flange columns	HP 200x57.2 – 400x231
	Wide flange bearing piles	IPN 80-550
□ II W (ASTM) □ II W-1 ASTM A6/A 6M □ II W-2 ASTM A6/A 6M □ II W-3 ASTM A6/A 6M	European standard beams	W 360x370x134 W 1100x400x499
亩… ፲ UB, UC (BS) 亩… ፲ UB-1 BS 4 part 1-1993 亩… ፲ UB-2 BS 4 part 1-1993	American wide flange beams	UB 178x102x19 UB 914x419x388
	British universal beams	UC 152x152x23 UC 356x406x634
	British universal columns	UPN 30-65 UPN 80-400
	European standard channels	UAP 80-300 UPE 80-400
iaL_L iaL_L20x20x380x80x8 Euronorm 56-77 iaL_L100x100x8160x160x19 Euronorm 56-77	Channels with parallel flanges	L 20x20x3 L 250x250x28
L180x180x16250x250x28 Euronorm 56-77 L L180x20x380x40x8 Euronorm 57-78	Equal angels	L 30x20x3 L 250x90x16
	Unequal angels	Ø 10.2x1.0 Ø 1016x400
⊞…□ θερμής έλασης ⊡…□ θερμής έλασης ⊡…□ ψυχρής έλασης	Circular hollow sections	20x20x1.6 400x400x12.5
 Ξ φολρης οποίης Ξ φυλρής έπασης Ξ Ο μυλρής έπασης Ξ Ο μυλρής 233.7 mm 	Square hollow sections cold formed	40x40x2.6 400x400x20.0
	Square hollow sections hot rolled	30x20x1.5 500x300x12.5
i	Rectangular hollow sections cold formed	50x30x2.6 400x260x17.5
	Rectangular hollow sections hot rolled	

Classification of cross sections EN 1993-1-1:2005 § 5.5

The design of steel elements can been done with elastic or plastic analysis depending on the class of the cross section.

The design of sections of classes 1 and 2 is based on the plastic resistance, the design of cross-sections of class 3 is base on elastic resistance and the design of cross-sections of class 4 is based on elastic resistance and effective cross section properties.

The classification of cross sections in 1, 2, 3 and 4 classes depends on the ratios of thickness to width of the parts of the cross-section which are in compression according to tables 5.2 of EN 1993-1-1:2005.

Table 5.2 EN 1993-1-1:2005 – Internal compression parts

		0	utstand flanges					
t†	C.	t †						
	Rolled sections	;			led sections			
Class	Part subject to co	mpression	Part su Tip in comp		ng and compress Tip in t			
Stress distribution in parts (compression positive)	+	-		+				
1	$c/t \le 9t$	2	$c/t \leq \frac{c}{2}$	<u>α</u>	$c/t \le \frac{9\epsilon}{\alpha\sqrt{\alpha}}$			
2	$e/t \le 10$	ε	$c/t \leq \frac{1}{2}$	<u>α0</u>	$c/t \le \frac{10\epsilon}{\alpha\sqrt{\alpha}}$			
Stress distribution in parts (compression positive)	+		- C	+				
3	c / t ≤14	ε	$c/t \le 21\varepsilon\sqrt{k_{\sigma}}$ For k_{σ} see EN 1993-1-5					
$\epsilon = \sqrt{235/f}$	^y	235 1,00	275 0,92	355 0,81	420 0,75	460 0,71		

Table 5.2 EN 1993-1-1:2005 – Outstanding flanges

Table 5.2 EN 1993-1-1:2005 - Angles

				Angles				
Refer also to "Outstand flanges" (see sheet 2 of 3)								
Class				Section in con	npression			
Stress distribution across section (compression positive)	Stress stribution across section mpression							
3			h	$t / t \le 15\varepsilon : \frac{b}{2}$	$\frac{h}{t} \le 11,5\varepsilon$			
			Tub	ular sections				
			t(-					
Class			Section	n in bending an		sion		
1				$d/t \le 5$	$0\epsilon^2$			
2				$d/t \le 7$	$0\epsilon^2$			
3	NOT	E For $d/t >$	$90\epsilon^2$ see EN 1	$d/t \le 9$				
	_	fy	235	275	355	420	460	
$\varepsilon = \sqrt{235/f}$	y _	3	1,00	0,92	0,81	0,75	0,71	
		ϵ^2	1,00	0,85	0,66	0,56	0,51	

Ultimate limit states EN 1993-1-1:2005 § 6.2

Tension EN 1993-1-1:2005 § 6.2.3

$$\frac{N_{Ed}}{N_{t,Rd}} \le 1$$
 (EN 1993-1-1, 6.5)

Design plastic resistance of the cross-section.

$$N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_{M0}}$$
(EN 1993-1-1, 6.6)

Design ultimate resistance of net cross-section at holes for fasteners.

$$N_{u,Rd} = \frac{0.9A_{net} \cdot f_u}{\gamma_{M2}}$$
(EN 1993-1-1, 6.7)

A area of cross-section

 $A_{\rm net}$ area of net cross-section (minus holes)

 f_{y} yield strength of steel

 f_u ultimate strength of steel

 $\gamma_{\rm M0}$, γ_{M2} partial factors for material

Compression EN 1993-1-1:2005 § 6.2.4

$$\frac{N_{Ed}}{N_{c,Rd}} \leq 1$$

$$N_{c,Rd} = \frac{A \cdot fy}{\gamma_{M0}} \text{ for class 1, 2, 3 cross-sections}$$

$$N_{c,Rd} = \frac{A_{eff} \cdot fy}{\gamma_{M0}} \text{ for class 4 cross-sections}$$

$$(EN 1993-1-1, 6.10)$$

$$N_{c,Rd} = \frac{A_{eff} \cdot fy}{\gamma_{M0}} \text{ for class 4 cross-sections}$$

$$(EN 1993-1-1, 6.11)$$

A area of cross-section

 $A_{\!\scriptscriptstyle e\!f\!f}\,$ effective area of cross-section

fy yield strength of steel

 $\gamma_{\rm M0}$ partial factors for material

In case the design value of shear is $V_{Ed} > 0.50 V_{pl,Rd}$ the reduced yield strength is used.

$$(1-\rho)fy$$
, where $\rho = \left(\frac{2V_{Ed}}{V_{pl,Rd}} - 1\right)^2$ (EN 1993-1-1, 6.29)

Bending moment EN 1993-1-1:2005 § 6.2.5

$$\frac{M_{Ed}}{M_{c,Rd}} \le 1$$
 (EN 1993-1-1, 6.12)

Design resistance of cross section for bending about the principal (y-y) or secondary (z-z) axis.

$$M_{y,Rd} = M_{pl,y,Rd} = \frac{W_{pl,y} \cdot fy}{\gamma_{M0}}$$
 for class 1, 2 cross-sections (EN 1993-1-1,

6.13)

$$M_{z,Rd} = M_{pl,z,Rd} = \frac{W_{pl,z} \cdot fy}{\gamma_{M0}} \text{ for class 1, 2 cross-sections}$$

$$M_{y,Rd} = M_{el,y,Rd} = \frac{W_{el,y} \cdot fy}{\gamma_{M0}} \text{ for class 3 cross-sections} \quad (\text{EN 1993-1-1, 6.14})$$

$$M_{el,z} \cdot fy \text{ for class 3 cross-sections}$$

$$M_{z,Rd} = M_{el,z,Rd} = \frac{W_{el,z} \cdot fy}{\gamma_{M0}}$$
 for class 3 cross-sections

$$M_{y,Rd} = M_{c,y,Rd} = \frac{W_{eff,y} \cdot fy}{\gamma_{M0}} \quad \text{for class 4 cross-sections}$$
(EN 1993-1-1, 6.15)
$$M_{z,Rd} = M_{c,z,Rd} = \frac{W_{eff,z} \cdot fy}{\gamma_{M0}} \quad \text{for class 4 cross-sections}$$

$$\begin{array}{ll} W_{pl,y} \; W_{pl,z} & \mbox{plastic section modulus about principal and secondary axis,} \\ W_{el,y} \; W_{el,z} & \mbox{elastic section modulus about principal and secondary axis,} \\ W_{eff,y} \; W_{eff,z} & \mbox{effective section modulus about principal and secondary axis,} \\ fy & \mbox{yield strength of steel} \\ \gamma_{\rm M0} & \mbox{partial factors for material} \end{array}$$

When bending moment acts together with axial force design check is performed according to :

$$\frac{M_{Ed}}{M_{N,Rd}} \le 1$$
(EN 1993-1-1, 6.31)
$$M_{N,Rd} = M_{pl,Rd} \left[1 - \left(\frac{N_{Ed}}{N_{pl,Rd}} \right)^2 \right]$$
(EN 1993-1-1, 6.32)

In case the design value of shear is $V_{Ed} > 0.50 V_{pl,Rd}$ the reduced yield strength is used.

$$(1-\rho)fy$$
, where $\rho = \left(\frac{2V_{Ed}}{V_{pl,Rd}} - 1\right)^2$ (EN 1993-1-1, 6.29)

Bi-axial bending EN 1993-1-1:2005 § 6.2.9

$$\left(\frac{M_{y,Ed}}{M_{y,Rd}}\right)^{\alpha} + \left(\frac{M_{z,Ed}}{M_{zRd}}\right)^{\beta} \le 1$$
(EN 1993-1-1, 6.41)

For I and H sections: $\alpha=2$, $\beta=5n$, $\beta\geq1$ ($n=N_{Ed}/N_{pl,Rd}$) For circular hollow sections: $\alpha=2$, $\beta=2$ For rectangular hollow sections $\alpha=\beta=1.66/(1-1.13 n^2)$

Shear EN 1993-1-1:2005 § 6.2.6

$$\frac{V_{Ed}}{V_{c,Rd}} \le 1$$
 (EN 1993-1-1, 6.17)

Plastic shear resistance parallel to the cross-section web.

$$V_{z,Rd} = V_{pl,z,Rd} = \frac{A_{vz} \cdot f_y}{\sqrt{3}\gamma_{M0}}$$
(EN 1993-1-1, 6.18)

Plastic shear resistance parallel to the cross-section flanges.

$$V_{y,Rd} = V_{pl,y,Rd} = \frac{A_{vy} \cdot f_y}{\sqrt{3\gamma_{M0}}}$$
(EN 1993-1-1, 6.18)

 $A_{_{\!V\!V}}$ $A_{_{\!V\!Z}}$ shear areas parallel to the cross-section web or flanges,

fy yield strength of steel

 $\gamma_{\rm M0}$ partial factors for material

Buckling resistance of uniform members in compression EN 1993-1-1:2005 § 6.3.1

Buckling resistance due to compression.

$$\frac{N_{Ed}}{N_{b,Rd}} \le 1$$
 (EN 1993-1-1, 6.46)

$$N_{b,Rd} = \frac{\chi A f_y}{\gamma_{M1}} \quad \text{for class 1, 2, 3 cross-sections}$$
(EN 1993-1-1, 6.47)

$$N_{b,Rd} = \frac{\chi A_{eff} f_y}{\gamma_{M1}} \quad \text{for class 4 cross-sections}$$
(EN 1993-1-1, 6.48)

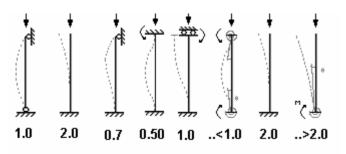
The reduction factor χ is determined from the non-dimensional slenderness λ

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \le 1$$
(EN 1993-1-1, 6.49)

$$\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$$

$$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}}; N_{cr} = \frac{\pi^2 \text{EA}}{\lambda^2}; \lambda = \frac{l_{eff}}{i}; i = \sqrt{\frac{I}{A}}$$

- $\overline{\lambda}$ non-dimensional slenderness,
- N_{cr} elastic critical buckling load,
- Lcr equivalent buckling length,


 λ slenderness,

i radious of gyration.

The imperfection factor α which corresponds to the appropriate buckling curve ao,a,b,c,d should obtained from Table 6.2 of Eurocode 3, EN 1993-1-1:2005:

Buckling curve	ao	а	b	С	d
Imperfection factor α	0.13	0.21	0.34	0.49	0.76

Equivalent buckling lengths Lcr/L

	Cross section		Limits	Buckling about axis	Bucklin \$ 235 \$ 275 \$ 355 \$ 420	g curve S 460
		1,2	$t_f \le 40 \text{ mm}$	y - y z - z	a b	a ₀ a ₀
ections	h y y	h/b > 1,2	$40 \text{ mm} < t_{f} \le 100$	y – y z – z	b c	a a
Rolled sections		≤ 1,2	$t_f \le 100 \text{ mm}$	y - y z - z	b c	a a
		≥ d/h	t _f >100 mm	y – y z – z	d d	c c
led ons	→ → t _f → t _f		$t_f \le 40 \text{ mm}$	y – y z – z	b c	b c
Welded I-sections	y y y y y y y y y y y y y y y y y y y	t _f >40 mm		y – y z – z	c d	c d
Hollow sections			hot finished	any	a	a ₀
Hol sect		cold formed		any	с	с
Welded box sections		ge	enerally (except as below)	any	b	b
Welde		thick welds: $a > 0.5t_f$ $b/t_f < 30$ $h/t_w < 30$		any	с	с
U-, T- and solid sections				any	с	с
L-sections				any	b	b

Table 6.2 EN 1993-1-1:2005 Selection of buckling curve of a cross-section

Lateral torsional buckling for uniform members EN 1993-1-1:2005 § 6.3.2

Lateral torsional buckling of uniform members in bending.

$$\begin{split} \frac{M_{Ed}}{M_{b,Rd}} &\leq 1 & (\text{EN 1993-1-1, 6.54}) \\ M_{b,Rd} &= \frac{\chi_{LT} W_y f_y}{\gamma_{\text{MI}}} & (\text{EN 1993-1-1, 6.55}) \\ W_y &= W_{pl,y} & \text{for class 1, 2 cross-sections,} \\ W_y &= W_{el,y} & \text{for class 3 cross-sections,} \end{split}$$

 $W_{y} = W_{eff,y}$ for class 4 cross-sections.

The reduction factor χ_{LT} is determined from the non-dimensional slenderness $\overline{\lambda}_{LT}$

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda_{LT}^2}}} \le 1$$
(EN 1993-1-1, 6.56)
$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda_{LT}^2} \right]$$
$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}}$$
The imperfection factor α which corresponds to the appropriate buckling curve a,b,c,d:

Buckling curve	а	b	С	d
Imperfection factor α_{LT}	0.21	0.34	0.49	0.76

Recommended values for torsional buckling curves:Rolled Sectionsh/b<2 buckling curve a, h/b>2 buckling curve bWelded sectionsh/b<2 buckling curve c, h/b>2 buckling curve d

The critical elastic moment for lateral torsional buckling is computed according to Annex F of Eurocode 3-1-1 (1992).

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(kL)^2} \left[\sqrt{\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(kL)^2 G I_t}{\pi^2 E I_z} + \left(C_2 Z_g - C_3 Z_j\right)^2} - \left(C_2 Z_g - C_3 Z_j\right) \right]$$

C1, C2, C3, coefficients depending on the loading conditions and support conditions, for a beam with uniform bending moment diagram C1=1.000, C2=0.000, C3=1.000 for a beam with parabolic bending moment diagram C1=1.132, C2=0.459, C3=0.525

- I_{t} St. Venant torsional constant,
- I_{w} warping constant,
- I_{z} second moment of inertia about the weak axis,
- *L* beam length between the support points,
- k , k_w coefficients depending on the support conditions,
- *Z_o* distance of shear center from point of load application

Uniform members in bending and compression EN 1993-1-1:2005 § 6.3.4

$$\frac{N_{Ed}}{x_{y}N_{Rk}/\gamma_{M1}} + k_{yy}\frac{M_{Y,Ed}}{\chi_{LT}M_{y,Rk}/\gamma_{M1}} + k_{yz}\frac{M_{z,Ed}}{M_{z,Rk}/\gamma_{M1}} \le 1$$
(EN 1993-1-1, 6.61)

$$\frac{N_{Ed}}{x_z N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{Y,Ed}}{\chi_{LT} M_{y,Rk} / \gamma_{M1}} + k_{zz} \frac{M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}} \le 1$$
(EN 1993-1-1, 6.62)

 $N_{Rk} = A f_{v}$

$$\begin{split} M_{y,Rk} &= W_{pl,y} f_y \text{ for class 1, 2 cross-sections} \\ M_{y,Rk} &= W_{el,y} f_y \text{ for class 3 cross-sections,} \\ M_{y,Rk} &= W_{eff,y} f_y \text{ for class 4 cross-sections,} \\ M_{z,Rk} &= W_{pl,z} f_y \text{ for class 1, 2 cross-sections} \\ M_{z,Rk} &= W_{el,z} f_y \text{ for class 3 cross-sections,} \\ M_{z,Rk} &= W_{el,z} f_y \text{ for class 4 cross-sections,} \\ \end{split}$$

The interaction coefficients k_{yy} , k_{yz} , k_{zy} , k_{zz} are determined from tables B.1 and B.2

Table B.1 interaction coefficients k_{yy} , k_{yz} , k_{zy} , k_{zy}

Interaction	Trme of	Design as	ssumption
factors	Type of sections	elastic cross-sectional properties class 3, class 4	plastic cross-sectional properties class 1, class 2
k _{yy}	I-sections RHS-sections	$\begin{split} & C_{\text{my}} \! \left(1\! + \! 0,\! 6 \overline{\lambda}_{\text{y}} \frac{N_{\text{Ed}}}{\chi_{\text{y}} N_{\text{Rk}} / \gamma_{\text{M1}}} \right) \\ & \leq & C_{\text{my}} \! \left(1\! + \! 0,\! 6 \frac{N_{\text{Ed}}}{\chi_{\text{y}} N_{\text{Rk}} / \gamma_{\text{M1}}} \right) \end{split}$	$\begin{split} & C_{my} \Biggl(1 + \Bigl(\overline{\lambda}_{y} - 0, 2 \Bigr) \frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{MI}} \Biggr) \\ & \leq C_{my} \Biggl(1 + 0.8 \frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{MI}} \Biggr) \end{split}$
k _{yz}	I-sections RHS-sections	k _{zz}	0,6 k _{zz}
k _{zy}	I-sections RHS-sections	0,8 k _{yy}	0,6 k _{yy}
ŀ	I-sections	$C_{mz} \left(1 + 0.6\overline{\lambda}_{z} \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{M1}}\right)$	$\begin{split} & \mathbf{C}_{\mathtt{nz}} \! \left(1 \! + \! \left(\! 2 \overline{\lambda}_{\mathtt{z}} - \! 0, \! 6 \right) \! \frac{\mathbf{N}_{\mathtt{Ed}}}{\chi_{\mathtt{z}} \mathbf{N}_{\mathtt{Rk}} / \gamma_{\mathtt{MI}}} \right) \\ & \leq \mathbf{C}_{\mathtt{nz}} \! \left(1 \! + \! 1, \! 4 \frac{\mathbf{N}_{\mathtt{Ed}}}{\chi_{\mathtt{z}} \mathbf{N}_{\mathtt{Rk}} / \gamma_{\mathtt{MI}}} \right) \end{split}$
k _{zz}	RHS-sections	$\leq C_{mz} \left(1 + 0.6 \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{MI}} \right)$	$\begin{split} & C_{mz} \Biggl(1 + \Bigl(\overline{\lambda}_z - 0, 2 \Bigr) \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{Ml}} \Biggr) \\ & \leq C_{mz} \Biggl(1 + 0.8 \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{Ml}} \Biggr) \end{split}$
	-sections and rec nt k _{zv} may be k _{zv}	tangular hollow sections under axial con $= 0$.	npression and uniaxial bending $M_{y,Ed}$

Table B.2

Interaction	Design assumptions			
factors	elastic cross-sectional properties	plastic cross-sectional properties		
lactors	class 3, class 4	class 1, class 2		
k _{yy}	k _{yy} from Table B.1	k _{yy} from Table B.1		
k _{yz}	k _{yz} from Table B.1	k _{yz} from Table B.1		
k _{zy}	$\begin{bmatrix} 1 - \frac{0.05\overline{\lambda}_{z}}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_{z}N_{Rk}/\gamma_{M1}} \end{bmatrix}$ $\geq \begin{bmatrix} 1 - \frac{0.05}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_{z}N_{Rk}/\gamma_{M1}} \end{bmatrix}$	$\begin{bmatrix} 1 - \frac{0.1\overline{\lambda}_z}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \end{bmatrix}$ $\geq \begin{bmatrix} 1 - \frac{0.1}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \end{bmatrix}$ for $\overline{\lambda}_z < 0.4$: $k_{zy} = 0.6 + \overline{\lambda}_z \le 1 - \frac{0.1\overline{\lambda}_z}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}}$		
k _{zz}	k _{zz} from Table B.1	k _{zz} from Table B.1		

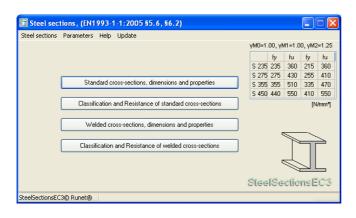
Factor Bending axis		Points braced in direction	
Cmy	у-у	Z-Z	
Cmz	Z-Z	у-у	
CmLT	у-у	у-у	

Table B.3

Mamont Diagram	Range		C_{my}, C_{mz} н C_{mLT} under loading	
Moment Diagram			Distributed	Concentrated
Μ ψΜ	$-1 \leq \psi \leq 1$		$0,6 + 0.4 \; \psi \geq 0,4$	
$(-) M_h \qquad \psi M_h$	$0\!\leq\!\alpha_{S}\!\leq\!1$	$\text{-1} \leq \psi \leq 1$	$0,2 + 0.8 \ \alpha_s \ge 0,4$	$0,2 + 0.8 \alpha_{s} \ge 0,4$
(+) M ₈	$-1 \leq \! \alpha_{s} \! < \! 0$	$0\!\leq\!\psi\!\leq\!1$	$0,1-0.8 \; \alpha_{S} \! \geq \! 0,\! 4$	$-0.8\alpha_{S} \geq 0,4$
$\alpha_s = M_s / M_h$		$\text{-1} \leq \psi < 0$	$0,1(1-\psi)-0.8\;\alpha_{S}{\geq}0,4$	$0,\!2(\text{-}\psi) = 0.8 \; \alpha_{\text{S}} \! \ge \! 0,\!4$
(+) M _s	$0 \leq \alpha_h \leq 1$	$\text{-1} \le \psi \le 1$	0,95 + 0,05 α _h	$0,90 \pm 0,10 \ \alpha_h$
(+) M _h ΨM _h	$-1 \leq \alpha_h < 0$	$0\!\leq\!\psi\!\leq\!1$	0,95 + 0,05 α _h	$0,90 + 0,10 \; \alpha_{h}$
$\alpha_h = M_h / M_s$		$-1 \leq \! \psi < 0$	$0,95 + 0,05 \alpha_h (1 + 2\psi)$	0,90 - 0,10 $\alpha_h(1 + 2\psi)$

Bibliography

Eurocode 3, EN1993-1-1:2005

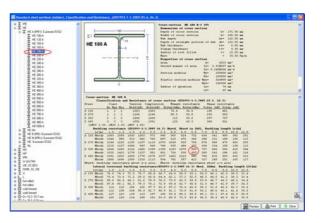


Examples

Example 1

Steel column 5.20 m. Axial load G = 80 kN, variable axial load Q = 120 kN. Steel S 355. Total axial design load: Ned =1.35xG+1.50xQ=1.35x80+1.50x120 = 288 kN Buckling lengths: Liy=5.20 m, Liz=5.20 m

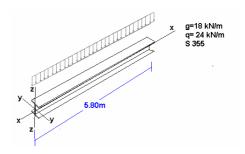
In the main program screen, click


Classification and Resistance of standard cross-sections

From the tree control on the left select section type **HEA**.

Click + and all the sections of type HEA are displayed.

For steel grade **S 355** and buckling length **5.20 m** (table values between 5.0 m and 6.0m), check Nbyrd and Nbzrd (buckling resistances in compression in y-y and z-z axis) to be greater than the design load of the column Ned=288 kN. Section **HE 180 A** is OK.


For buckling length **6.0m**>5.20m, the section has, buckling resistances in compression **Nbyrd = 900 kN** > 288 kN and **Nbzrd = 397 kN** > 288 kN.

Example 2

Beam 5.80 m with loads. Permanent load g = 18 kN/m. Variable load q = 24 kN/m. Steel S 355. Design load: ged = 1.35x18.0+1.50x24.0 = 60.30 kN/m Maximum design bending moment: My,ed = $60.30 \times 5.80^2 / 8 = 253.6 \text{ kNm}$ Maximum design shearing force: Vz,ed = 60.30x5.80/2 = 174.9 kN

Classification and Resistance of standard cross-sections

In the main program screen, click

From the tree control on the left select section type **IPE**.

Click + and all the sections of type IPE are displayed.

For steel grade S 355 and lateral buckling length L_{Lt}=5.80 m (table 6.0m), check Mbrd2 (parabolic bending moment diagram) to be greater than the maximum bending moment acting on the beam

My,ed = 253.6 kNm.

Section IPE 500 is OK.

For lateral buckling length 6.0m>5.80 m, has resistance in bending moment due to

lateral buckling Mbrd2 = 288 kNm>253.6 kNm

From the table above you can check the resistances in shear and bending.

Shear resistance Vc,rdz = 1227 kN, bending resistance Mc,rdy = 779 kNm.

22